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Last decade has led to the accumulation of large amounts
of data on cancer genetics, opening an unprecedented
access to the mapping of cancer genes in the human
genome. Single-nucleotide polymorphisms (SNPs), the
most common form of DNA variation in humans, emerge
as an invaluable tool for cancer association studies. These
genotypic markers can be used to assay how alleles of
candidate genes correlate with the malignant phenotype,
and may provide new clues into the genetic modifications
that characterize cancer onset. In this cancer-oriented
study, we detail an SNP mining strategy based on the
analysis of expressed sequence tags among publicly
available databases. Our whole-genome approach pro-
vides a comprehensive and unbiased description of
nonsynonymous SNPs (nsSNPs) in tumoral versus normal
tissues. To gain further insights into the possible relation-
ships between genetic variation and altered phenotype,
locations of a subset of nsSNPs were mapped onto protein
domains known to be critical for protein function.
Computational methods were also used to predict the
potential impact of these cancer-associated nsSNPs on
protein structure and function. We illustrate our approach
through the detailed biochemical and structural charac-
terization of a previously unknown cancer-associated
mutation (G79C) affecting the 8 kDa dynein light chain
(DNCL1).
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Introduction

A promising application of the large amounts of genetic
data currently available for analysis lies in developing a

better understanding of complex diseases such as cancer.
Current efforts towards this end attempt to understand
the molecular signatures of cancer through the identi-
fication of genes whose products are deregulated in
malignant cells. Since each susceptibility gene does not
function in isolation, cancer being a polygenic disorder,
systematic searches of genes with small effect are of
increasing interest.

Every gene contains some level of polymorphism,
with single-nucleotide polymorphisms (SNPs) occurring
every B2000 bp throughout the human genome (Sachi-
danandam et al., 2001). Owing to large-scale SNP
discovery, genetic variation in the human genome is now
an emerging resource for the study of cancer-related
genes (Strausberg et al., 2003; Imyanitov et al., 2004;
Qiu et al., 2004). Since cancer is at least in part caused
by the accumulation of inherited and/or somatic
mutations, knowledge of these molecular changes is of
invaluable importance towards dissection of complex
biological pathways contributing to cancer phenotype.
In this respect, SNPs localized in coding regions of
candidate genes and modifying the amino-acid sequence
of gene products (i.e. nonsynonymous SNPs (nsSNPs))
are of particular interest, because nsSNPs may affect
protein structure and functions (Collins et al., 1997;
Chakravarti, 1998; Syvanen et al., 1999). Base substitu-
tions in the coding sequence can activate proto-
oncogenes (for instance, by enabling ligand-independent
proliferative signalling) or inactivate tumour suppressor
genes that contribute to cancer mainly through loss-of-
functions mutations. Alternatively, SNPs associated
with cancer could represent interesting markers (e.g.
haplotype tags), which could be useful in linkage
disequilibrium studies. Expressed sequence tags (ESTs)
are partial single-pass 400–600 bp sequences generated
from cDNA libraries that provide an opportunity to
detect these single-nucleotide differences among se-
quences derived from a same gene (Buetow et al.,
2001). Since cDNA libraries are generated from a wide
range of cancerous and normal tissues, some variations
in genes might be directly related to the cancer
phenotype.

In this report, we first present our results concerning
the identification of human genetic variants (SNPs)
using EST sequences from different libraries. Among
those, we have detected genetic variants associated with
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cancer (i.e. those that are statistically over-represented
in ESTs derived from cancerous libraries). This whole-
genome scanning strategy had the advantage of being
a completely hypothesis-free approach that allowed the
ab initio detection of cancer-associated SNPs present on
EST sequences. Next, we analysed functionally the
nsSNPs that were found to be associated with cancer. In
particular, we mapped the locations of individual
nsSNPs onto functionally relevant protein features.
Predictive tools were also used to provide further
insights into how these changes could be translated into
biochemical events that could lead to the development
and maintenance of cancer. Lastly, we provide experi-
mental characterization of a novel polymorphism
(G79C) affecting the 8 kDa dynein light chain
(DNCL1/DLC8/LC8/DLC1), a multifunctional regula-
tory protein that plays important roles in fundamental
processes such as cell proliferation, apoptosis, cytoske-
leton organization and whose deregulation could
influence tumour progression.

Results

Preselection of candidates for cancer association studies

One way to identify genes of cancer relevance is through
the identification and characterization of genetic var-
iants. In this study, we have used an EST-based in silico
pipeline to detect cancer-associated coding SNPs
(Table 1a). We chose to detail the SNP spectrum limited
to polymorphisms introducing changes in the amino-
acid sequence (nsSNPs). Our cancer association proce-
dure led to the identification of a total of 267 nsSNPs
(on 206 transcripts) that were present at significantly
(Po0.01) higher allele frequencies in tumour compared
to normal tissues (Supplementary file 1). With respect to
the delineation of nsSNPs from EST data, we estimated
how large the fraction of bona fide SNPs was expected to
be after filtering using sets of verified SNPs from
dbSNPs. We found that a percentage of 25% of the
cancer-associated nsSNPs contained in our data set
corresponds to validated nsSNPs (last column of
Supplementary file 1). Next, three approaches were used
for controlling the false discovery rate in our data set:
Bonferroni and Benjamini and Hochberg multiple
testing corrections, and a resampling procedure. The
candidate SNPs positive after these stringent multiple
testing corrections (23/267 after Bonferroni and 76/267
after Benjamini and Hochberg, n¼ 8336) are highlighted
in Supplementary file 1. By the resampling procedure,
we found that 98 observed P-values fell below the fifth
percentile of the empirical P-value distribution
(Po0.0011). Noteworthy, we determined that our
procedure identified 15% (31/206) previously studied
genes involved in oncogenesis, based on a list of B2500
genes compiled as described in the Materials and
methods section. Since the fraction of such reference
genes in our initial data set was 7% (2401/34 091), our
data mining protocol lead to a significant enrichment in
cancer genes (P-value¼ 1.5� 10�5; w2 test). Thus, despite

a non-negligible false-positive rate, our protocol seems
intrinsically prone to detect cancer-associated genes. In
any case, these results suggest that EST data could be
successfully mined to propose a score-ranked preselec-
tion of candidate polymorphisms that may be useful for
cancer association studies. This list of 267 nsSNPs
presumably associated with the cancer phenotype is
summarized in Table 2.

Association with tumour development

Our list of 267 cancer-associated variants contains a
number of genes possibly involved in the cellular
capabilities that might be acquired by cancer cells
(Hanahan and Weinberg, 2000), for example, trans-
forming protein RhoA, translationally controlled tu-
mour protein TCTP, chk1 kinase, HLA class I and class
II histocompatibility antigens, galectin-3, squamous cell
carcinoma antigen 1, prostate-specific antigen, kallik-
rein-1, CD29, CD99, cathepsin D and metastasis-
associated protein MTA1.

Noteworthy, approximately 10% of nsSNPs identified
in our collection of 267 cancer-associated variants were
represented by ribosomal proteins. Although we cannot
formally rule out the possibility that this proportion
may be a consequence of the high expression levels of
ribosomal genes, it has been previously reported that
regulation of ribosome function was often lost in
tumour cells (Ruggero and Pandolfi, 2003). In this
regard, we found a variant causing a Gly to Val change
at residue 165 in ribosomal protein S19, a protein that
has been associated to cancer predisposition in Dia-
mond–Balckfan anaemia (Draptchinskaia et al., 1999).
Another ribosomal protein, S3a, which is able to induce
transformation (Naora et al., 1998) also displayed
genetic variations associated with tumoral context in
our analysis. The ability of the MYC oncogene to
regulate genes involved in ribosome biogenesis and
translation control is now well documented (Coller
et al., 2000; Boon et al., 2001; Menssen and Hermeking,
2002). Interestingly, we identified a first nsSNP in
mitotic-arrest-deficient MAD-1 protein, a transcrip-
tional repressor of MYC target genes, and another in
the product of one of the MYC target genes, namely the
translation initiation factor eIF-2. Translation initiation
factor IF-2 was shown to be involved in transformation
when its function is upregulated (Rosenwald et al., 1993;
Rosenwald, 1996), while MYC antagonist MAD-1 acts
as a tumour suppressor in a variety of cell lines (Ayer
et al., 1993; Roussel et al., 1996; Cerni et al., 2002).
Notably, the Arg to His change at position 558
identified in the MAD-1 protein has also been reported
as an uncommon polymorphism in a case study of lung
cancer (Nomoto et al., 1999).

Functional proteomics

In this part, we wished to study the genetic variations
that can alter the functions of the cancer-associated
candidate proteins. Indeed, although the majority of the
SNPs identified in our experiment are expected to
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constitute markers associated with cancer (as inferred
from the analysis of the nsSNPs/synonymous SNPs
ratio, see Table 1b), it is probable that at least a fraction
represent functional SNPs. To understand the relation-
ship between genetic and phenotypic variation, it may
be useful to assess the putative structural and functional
consequences of the respective nonsynonymous muta-
tions in candidate proteins. Therefore, the tumour-
associated SNP data were analysed in combination with
more global approaches such as functional proteomics.
However, the analysis was limited to the subset of
candidate nsSNPs, which were positive after the
resampling procedure (n¼ 98, Po0.0011), in order to
reduce the false-positive bias (B2/10 in this data set
according to the Benjamini and Hochberg correction).

Nature of the polymorphisms Nonconservative amino-
acid substitutions, including premature stop codons,
that is, those that are likely to be more significant for the
protein function, were over-represented (91.8%) in our
set of cancer-associated nsSNPs compared to conserva-
tive substitutions. Although such a percentage was
expected since the theoretical fraction of nonconserva-
tive substitutions is approximately 86%, the fraction of
nonconservative amino-acid variants was found to be
higher in the set of cancer-associated nsSNPs than in the
set of nsSNPs not associated with cancer (91.8 versus
88.2%). These results prompted us to analyse more
precisely the protein features that were affected by
cancer-associated nsSNPs.

Protein domains affected by cancer-related nsSNPs We
wished to distinguish nsSNPs that lead to amino-acid
changes in the functional sites or domains of proteins
since these variants are more likely to affect protein
function. To determine which protein signatures are
affected by genetic variation in our list of tumour-
related candidates, we have mapped the identified
mutations onto protein domains extracted from the
Ensembl database. We used Interpro to define protein

domain families present in our set of cancer-associated
nsSNPs (Mulder et al., 2003). Estimates of the human
proteome coverage indicate that approximately three-
quarters of all human proteins have an assignment to at
least one Interpro domain (available at http://www.
ebi.ac.uk/proteome).

A fraction of 65 nsSNPs out of 98 (66.3%) had an
assignment to known protein domains, including less
informative regions, namely segments of low complex-
ity, signal peptides, coiled coils and transmembrane
regions (not shown). Table 3 shows an ordered list of the
most frequently targeted Interpro entries from our set of
98 cancer-associated nsSNPs. These domains include a
lectin typical signature, modules involved in control of
proteolytic activation and motifs of the immunoglobulin
superfamily, which have been implicated in tumour
progression, metastasis as well as tumour angiogenesis
(Sass, 1998; Johnson, 1999; Bassen et al., 2000; Gorelik
et al., 2001; Wall et al., 2003; Jin and Varner, 2004; Turk
et al., 2004).

Thus, these results suggest that at least a fraction of
the tumour-associated nsSNPs may probably have some
effect on protein function and phenotype. Nevertheless,
localization of nsSNPs in relevant protein domains does
not directly imply that they dramatically change protein
function.

Possible impact of cancer-associated nsSNPs on protein
structure and function The selection of nonsynon-
ymous polymorphisms likely to cause the most severe
effects on the function of the protein and on the
phenotype could be facilitated considering other parti-
cular criteria. First, nsSNPs affecting amino-acid
residues that are not substituted between closely related
homologues are likely to display the highest impact on
protein function (Poteete et al., 1992). Moreover, some
amino-acid replacements are more likely to alter the
three-dimensional (3D) structure of the candidate
proteins than others. The possible impact of amino-acid
allelic variants on protein activity is thus a function of

Table 1 Details on the data mining procedure. (A) SNPs counts in each analytical step. Coding SNPs and nonsynonymous SNPs are referred to as
cSNPs and nsSNPs, respectively. (B) Categorization of the ns/synonymous SNP ratio nsSNPs/sSNPs based on allele frequencies. The overall
nsSNPs/sSNPs ratio is 1.27 after algorithm filtering versus 0.78 after association test and 0.59 after Benjamini and Hochberg multiple testing
correction (n¼ 14 867). Most of this discrepancy arises from a bias in the association procedure that focuses on relatively frequent alleles

(corresponding to lower nsSNPs/sSNPs ratio in our data set, see italics)

A
Total nsSNPs/total cSNPs (after algorithm filtering) 17 628/31 456
Total nsSNPs/total cSNPs (for association test) 8 336/14 867
nsSNPs/cSNPs (with Po0.01) 267/609

Frequency range nsSNPs/sSNPs
(Cargill et al., 1999)

nsSNPs/sSNPs (% of data
set) after filtering

nsSNPs/sSNPs (% of data
set) after association test

nsSNPs/sSNPs (% of data
set) after Benjamini and
Hochberg correction

B
0–5% 1.20 1.58 (55.6%) 1.17 (33.2%) 1.147 (28.4)
5–15% 0.72 1.21 (18.7%) 0.72 (20.4%) 0.45 (23.7)

15–50% 0.61 0.84 (25.7%) 0.59 (46.4%) 0.447 (47.9)

Total 0.89 1.27 (100%) 0.78 (100%) 0.59 (100%)
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both the structural locations of nsSNPs and phylo-
genetic conservation (Sunyaev et al., 2000). A number of
algorithms have been implemented to predict the
potential of amino-acid substitutions to impact protein
structure and function (Sunyaev et al., 2000; Chasman
and Adams, 2001; Ng and Henikoff, 2002). The basic
criteria for these computational methods are sequence

homology, physicochemical properties of the substituted
residues and structural information. The SIFT (Sorting
Intolerant From Tolerant) program focuses more on
sequence conservation over evolutionary time and the
nature of amino acids in predicting the effect of residue
substitutions on function (Ng and Henikoff, 2003). In
addition to these parameters, the Polyphen (Polymorph-

Table 2 Summary of cancer-associated nsSNPs

Description Ref Position Var P-value Polyphen SIFT

Ig alpha-1 chain C region T* 105 N 5,85E-26 + �
40S ribosomal protein S2 T* 247 N 3,40E-11 +/� +
60S ribosomal protein L3 (HIV-1 TAR RNA-binding protein B) G* 272 S 3,34E-09 + +
Trafficking protein particle complex subunit 4 (Synbindin) M* 110 T 3,81E-09 +/� �
Xaa-Pro dipeptidase G* 159 D 4,65E-08 � +
Single-stranded DNA-binding protein MSSP-1 I* 198 T 6,33E-08 � +
Lithostathine 1 alpha precursor T* 77 N 1,16E-07 � �
Pulmonary surfactant-associated protein C precursor (SP-C) T* 138 N 2,20E-07 +/� +
Alpha-1-acid glycoprotein 1 precursor (AGP 1) R* 38 Q 5,77E-07 � �
Zona pellucida sperm-binding protein 3 precursor (ZP3) S 315 P 8,58E-07 � �
40S ribosomal protein S9 R* 45 M 2,98E-06 +/� +
Transforming acidic coiled-coil-containing protein 2 (AZU-1) Q* 978 K 1,09E-05 � �
Thioredoxin-dependent peroxide reductase R 170 Q* 1,18E-05 � �
Fibulin-1 precursor N* 456 D 1,24E-05 +/� �
60S ribosomal protein L5 Y* 209 C 1,45E-05 +/� �
Beta-2-microglobulin precursor (HDCMA22P) H* 104 Y 1,50E-05 + +
Trypsin I precursor C* 48 F 1,89E-05 + +
SH3 domain GRB2-like protein B2 (Endophilin B2) G* 336 E 1,90E-05 � �
Beta crystallin B2 R 145 W 3,50E-05 + +
Transforming protein RhoA R 5 Q 3,69E-05 � �
Lithostathine 1 beta precursor A* 85 G 5,63E-05 � +
Septin 7 (CDC10 protein homologue) E 318 A* 7,36E-05 +/� +
Carboxypeptidase B precursor (PASP) D 255 N* 8,10E-05 � �
8 kDa dynein light chain (DNCL1) G* 79 C 1,12E-04 + +

Placental ribonuclease inhibitor P* 169 L 1,13E-04 +/� �
adipocyte enhancer-binding protein 1 precursor K 1133 E 1,16E-04 � +
Prostate-specific antigen precursor (Kallikrein 3) P* 97 T 1,40E-04 � +
HLA class I histocompatibility antigen, B-8 alpha chain G* 324 E 1,46E-04 +/� +
lethal giant larvae homologue 1. S 148 G* 1,71E-04 � �
IGFBP-2-binding protein, IIp45 K 167 E* 1,71E-04 � �
Mitochondrial ribosomal protein L47 isoform a F* 200 L 1,90E-04 +/� +
Tubulin alpha-1 chain S* 107 N 2,07E-04 +/� +
40S ribosomal protein S3 F* 152 L 2,56E-04 + +
Polyadenylate-binding protein 3 (PABP 3) G 165 D 2,86E-04 � �
SET and MYND domain containing 2 (HSKM-B protein) G 165 E 3,54E-04 +/� �
ADP, ATP carrier protein (adenine nucleotide translocator 2) F* 130 L 4,10E-04 � +
Glucagon precursor P* 167 Q 4,64E-04 +/� �
40S ribosomal protein S26 T* 112 K 4,70E-04 +/� +
Cathepsin D precursor A 58 V 4,71E-04 � �
DNA-binding protein inhibitor ID-3 (HLH-protein HEIR-1) T 122 A* 4,86E-04 � �
Immunoglobulin gamma Fc receptor III-A precursor G 183 D 4,89E-04 � +
McKusick–Kaufman/Bardet–Biedl syndromes putative chaperonin G* 532 V 6,40E-04 + �
Interferon-induced transmembrane protein 3 E* 21 V 6,70E-04 +/� +
Kallikrein 1 precursor E 145 Q 6,96E-04 � �
Ubiquitin S 665 F 7,73E-04 � +
Interleukin 17 receptor C isoform 4 precursor S* 111 L 8,68E-04 � +
Kunitz-type protease inhibitor 2 precursor V 200 L 8,93E-04 � �
Prostaglandin-H2 D-isomerase precursor P* 98 T 9,84E-04 + +
Interferon regulatory factor 7 Q 412 R 1,01E-03 � �
Williams–Beuren syndrome chromosome region 16 protein R 30 G* 1,08E-03 +/� +

A selection of 50 nsSNPs (out of 267) with significantly different allele frequency in normal versus tumoral tissues (exact Fisher’s test; Po0.01).
nsSNPs are ranked by decreasing P-value. Positive candidates after the multiple testing corrections are set in italics (Bonferroni), in bold (Benjamini
and Hochberg) or underlined (resampling procedure). The allele matching the chimpanzee sequence at the nsSNP position in high-quality
alignments was designated as the ancestral allele (asterisk in ‘reference’ or ‘variant’ columns). Alleles associated with cancer correspond to variant
alleles. Our data indicate that most of the variant alleles were not ancestral (see also Supplementary file 1). For Polyphen predictions of putative
SNP impact on protein function, (�) means ‘benign’, (+/�) possibly damaging and (+) probably damaging. For SIFT predictions, (�) ‘tolerated’
and (+) means ‘affect protein function’. Information concerning the SNP present on DNCL1 appears in bold. For full data access, see
Supplementary file 1
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ism phenotyping) tool also evaluates the location of the
replacement within identified functional domains and
3D structures (Sunyaev et al., 2001b; Ramensky et al.,
2002).

Polyphen analysis of our set of cancer-associated
nsSNPs indicates that one-third (33.7%) of nsSNPs are
likely to affect function (20 ‘possibly damaging’ and 11
‘probably damaging’ over 92 predictions). When the
SIFT algorithm is applied, the percentage of replace-
ments predicted to impact protein function increases to
36.7% (34 of 94).

Taken together, these results suggest that a subset of
tumour-related nonconservative mutations could affect
important functional features on proteins. However, in
spite of its usefulness in the selection of individual
candidate SNPs, the global approach we conducted does
not provide a mechanistic explanation for each poten-
tially deleterious variant. So, in a last part of this work,
we wanted to exemplify our approach through the
description of a presumably deleterious genetic variation
affecting a protein that would be of widespread
distribution, strong evolutionary conservation and
interacting with a variety of proteins.

Example of genetic variation: DNCL1

Rationale for DNCL1(G79C) characterization We
focused our attention on the 8 kDa light chain of dynein
(DNCL1), one of the most conserved proteins through-
out evolution. DNCL1 expression is ubiquitous in
various cell types and a growing number of proteins
have been reported as DNCL1 interaction partners
(Naisbitt et al., 2000; Schnorrer et al., 2000; Puthalakath
et al., 2001; Fuhrmann et al., 2002). Structural studies
showed that DNCL1 forms a homodimer containing
two symmetric target-binding channels, which could
accommodate several peptides derived from interacting
partners (for instance, Bcl-2 family proapoptotic pro-
teins Bim or Bmf or neuronal nitric oxide synthase;
nNos) (Jaffrey and Snyder, 1996; Puthalakath et al.,
1999; Fan et al., 2001; Puthalakath and Strasser, 2002).
The present study identified a particular nsSNP corre-
sponding to a Gly to Cys substitution at amino-acid
position 79, that is, a residue located in a b turn
structure at the very end of the target-binding channels
(Figure 1a). Analysis of the EST data showed that this
variant was exclusively found in cancer tissues (corre-
sponding to eight different libraries prepared from
ovary, colon, kidney and larynx tumours). Furthermore,
this G79C substitution was predicted to affect protein
function according to the SIFT algorithm and was
categorized as ‘probably damaging’ according to the
Polyphen program. From an evolutionary perspective,
comparison of homologous proteins indicates that four
replacements involving amino acids Q, D, E or N (but
never C) occur at this position, those replacements being
categorized as benign using Polyphen and SIFT predic-
tion tools. Structurally, Gly79 is located in a void at the
surface of the molecule and has been depicted as one of
the B12 residues contributing to the groove and
exclusively devoted to peptide binding (Liang et al.,

1999) (Figure 1b). Since this amino acid normally
establishes hydrogen bonds with bound peptides, we
reasoned that the alteration we identified would likely
result in loss of binding affinity and/or altered specifi-
city.

Substitution of conserved Gly79 with Cys perturbs
DNCL1’s target binding To test experimentally the
functional impact of the G79C mutation, we compared
the interactions of the wild-type DNCL1 and the G79C
mutant with its target proteins including BS69, dynein
intermediate chain and proapoptotic protein Bim. We
found that the G79C mutant of DNCL1 displayed
significantly weaker bindings to all three targets that we
have tested (Figure 2a, and data not shown).

We next investigated the conformational impact of
the G79C mutation to DNCL1 using NMR spectro-
scopy. Figure 2b compares the backbone 1H-15N HSQC
spectra of the wild-type (red) and the mutant (green)
forms of DNCL1. The nicely dispersed HSQC spectrum
of the G79C mutant indicated that the protein is well
folded. However, one can notice that the mutation
induced significant chemical shift changes to a number
of amino-acid residues throughout the protein. The
mutation-induced chemical shift changes were mapped
to the 3D structure of the DNCL1 dimer using the
minimal shift perturbation method (Farmer et al., 1996)
(Figure 2c). We noticed that the mutation of Gly79 in
the b3/b4-loop induced particularly large chemical shift
changes to the residues in the b1/b2-loop and the
N-terminus of a2 helix of the protein, both of which are
known to be intimately involved in the target binding
(Liang et al., 1999; Fan et al., 2001). The large chemical
shift perturbations observed for the b1/b2-loop and the
N-terminus of the a2 helix are presumably due to the
close vicinities between the b3/b4-loop to these two
regions in the 3D structure of the protein. Earlier on, we
showed that the b1/b2-loop is particularly important for
maintaining the dimer conformation and for the target
binding of DNCL1 (Wang et al., 2003). Alteration of the
b1/b2-loop by insertion of two residues (Gly-Ser)
completely disrupted DNCL1’s target-binding capacity.
It is possible that the conformational changes of the b1/
b2-loop induced by the G79C mutation may partially
account for the weakened target binding of DNCL1.

Discussion

In this work, we have presented a list of SNPs that could
constitute relevant genetic markers for cancer diagnosis,
and could be useful for cancer association and linkage
disequilibrium studies. Since completeness of the cur-
rently available SNP databases is obviously not reached
(Reich et al., 2003), concerted efforts for detection of
genetic variations and the use of different algorithms
and resources are needed to assemble a more complete
list of genes likely to be mutated in cancer. In this
regard, our whole-genome approach provides a com-
prehensive description of nsSNPs in cancer versus
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normal tissues, unbiased by what is expected to be
associated with the tumoral context. Moreover, while
most of the works published to date have used
previously known SNPs from public databases, our
approach was designed to allow the de novo identifi-
cation of uncharacterized SNPs using EST data.

The limitations owing to our EST-based approach
have been well explained in two recent publications
(Imyanitov et al., 2004; Qiu et al., 2004). Briefly, large-
scale analyses are tributary to the quality and quantity
of data present in the used databases. Moreover, several
biases could account for the allelic imbalances that
could be observed (or not), particular the uncertainty
concerning the origin of samples. Besides, there is a need
for more information pointing altered function of
candidate variants before attempting a correlation with
cancer. In addition, a candidate nsSNP may contribute
to cancer in certain genetic and environmental contexts,
but not in others. To avoid overinterpretation of data,
the proteins affected by nonsynonymous amino-acid
changes related to tumoral context should not be taken
as direct targets for cancer therapy. However, our
approach combining mutation detection in EST data
and functional proteomic description of the SNPs could
highlight protein features and molecular processes to
prioritize in further studies.

For instance, our results support the view that
deregulation of ribosome biogenesis, translation and
protein synthesis may be a hallmark of tumour pro-
gression, a notion illustrated by the genetic variations
discovered in the MYC-Mad-eIF-2 network. Analysis of
protein domain distribution between normal and
tumoral state allowed us to identify typical protein
signatures likely to be targeted during the transforma-
tion process. In this regard, lectin module is shared by
proteins that control tumour cell survival, adhesion to
extracellular matrix, as well as tumour vascularization
and other processes that are crucial for metastatic
spread and growth (Sass, 1998; Bassen et al., 2000;
Gorelik et al., 2001). Recent evidence shows that tumour
antigens exploit C-type lectins to escape intracellular

degradation resulting in abortive immunity. Proteolytic
enzymes released in the pericellular microenvironment
are other key players in cancer cell–stroma interactions
and constitutes biomarkers for malignant tumours, with
roles in migration and invasive growth of tumour cells
(Wall et al., 2003; Turk et al., 2004). The serine protease
motif was present in our analysis together with the
aspartic protease module, suggesting that deregulation
of proteolytic enzymes or an abnormal proteinase/
antiproteinase balance could exist in cancer cell envir-
onment.

We have also tried to characterize the consequences of
genetic variations in coding sequences using predictive
tools (Polyphen and SIFT). These programs were
approximately 80% successful in benchmarking experi-
ences referring to deleterious amino-acid replacements
(Chasman and Adams, 2001; Sunyaev et al., 2001a; Ng
and Henikoff, 2002). These algorithms are roughly
concordant in their predictions (Xi et al., 2004) and have
been used in a growing number of reports (Iida et al.,
2002; Mohrenweiser et al., 2002; Fleming et al., 2003).
However, most mutations cannot be fully understood in
terms of structural, proteomic or phylogenetic features,
but require experiments including mutagenesis studies to
analyse the effect of changing an amino acid on
function, stability, solubility and interactions with other
molecules, catalysis, post-translational modifications,
allosteric regulation and subcellular localization. This
is the case for the polymorphism identified in DNCL1
that we described in more details in the present study.
DNCL1 is a highly conserved protein found in species as
distant as Aspergillus, Chlamydomonas, nematode and
human. DNCL1 interacts with a number of proteins
involved in a variety of functions, including myosin V
and dynein, nNOS, the Drosophila mRNA localization
protein Swallow, the transcriptional regulator ikappaB
and the postsynaptic scaffold protein GKAP (Naisbitt
et al., 2000; Schnorrer et al., 2000; Puthalakath et al.,
2001; Fuhrmann et al., 2002). DNCL1 also interacts
with Bim and Bmf, two proapoptotic members of the
Bcl-2 family of apoptotic regulators (Puthalakath et al.,

Table 3 Protein domains from Interpro affected by nsSNPs

Rank Total (n¼ 11 092) Tumour (n¼ 78) Interpro Name

1 (**) 215 7 IPR007110 Immunoglobulin like
2 (***) 73 6 IPR001254 Serine protease, trypsin family
3 (**) 102 4 IPR000504 RNA-binding region RNP-1 (RNA recognition motif)
4 (***) 6 3 IPR001064 Beta and gamma crystallin
5 (***) 18 3 IPR003990 Pancreatitis-associated protein
6 (**) 25 3 IPR001304 C-type lectin
7 (**) 15 2 IPR001461 Aspartic protease A1, pepsin
8 (*) 21 2 IPR000566 Lipocalin-related protein and Bos/Can/Equ allergen
9 (*) 1 1 IPR000434 Polycystic kidney disease type 1 protein

10 (*) 1 1 IPR000892 Ribosomal protein S26E

Top 10 Interpro domains affected by cancer-associated nsSNPs (positive after the resampling procedure) are listed. Asterisks correspond to
domains significantly enriched in the tumoral set (exact Fisher’s test): *Po0.05, **Po0.01, ***Po0.001. The P-values were computed for each
Interpro domain based on the number of nsSNP associated with cancer (‘tumour’) versus total number of nsSNPs (‘total’). The analysis was limited
to the subset of 98 candidate nsSNPs positive after the resampling procedure, which corresponds to 65 nsSNPs (total hits¼ 78, some nsSNPs
affecting more than one domain)
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1999, 2001). Based on these observations, DNCL1 is
likely to constitute a multifunctional regulatory protein
involved in various biological processes. In Drosophila,
partial mutation of the DNCL1 gene leads to severe
developmental defects including abnormal axonal pro-
jections, while total loss-of-function mutations are lethal
due to apoptosis (Dick et al., 1996; Phillis et al., 1996),
further emphasizing the role of DNCL1 in cytoskeletal
dynamics and cell death/survival decisions. In spite of
numerous data suggesting a crucial cellular role for
DNCL1, very few reports have focused on possible
relationships between DNCL1 alterations and cancer.

The polymorphism we identified affects a Gly residue
located in the close vicinity of a b (namely b3) strand
that has been shown to contact binding partners (Liang
et al., 1999; Jin and Varner, 2004). Moreover, it is
believed that an nsSNP has an increased probability of
functional alteration when it causes a mutation in an
important protein surface pocket or void (Stitziel et al.,
2003). Thus, as many disease-associated nsSNPs, Gly79
is located in a void at the surface of DNCL1. Since the
b3/b4-loop is also of structural role for forming the
sharp turn, any change in this region was suspected to
change directly the folding of the entire molecule and the
interaction between DNCL1 and its interactors. We
demonstrated here that the G79C mutation effectively
induced a clear conformational change to DNCL1 and
significantly reduced in vitro target-binding capabilities
compared to the wild-type version. Potential hindrance
of ligand binding introduced by the G79C polymorph-
ism resembles the G75D mutation on retinol-binding
protein, which interferes with retinol binding both
electrostatically and sterically (Wang and Moult,
2001). These findings therefore validate the computa-
tional predictions that were made for this candidate, and
provide a biochemical clue as to the possible molecular
alteration of DNCL1 in tumours. Recent reports suggest
that DNCL1 function is regulated by phosphorylation
and that its deregulation could promote tumorigenesis

(Vadlamudi et al., 2004). Since DNCL1 is a linker
protein that brings together proteins with appropriate
target sequences, genetic variation on DNCL1 could
either disrupt normal interactions or provoke unusual
interactions, favouring the emergence of an abnormal
interactome that could contribute to tumour develop-
ment.

Future studies may deal with insertion–deletion
patterns or chromosomal translocations that could be
common events in tumoral cells. In addition, comple-
mentary analyses focusing on SNPs present in 50- or
30-UTR of transcripts can be undertaken. Such tumour-
specific noncoding SNPs might further be tentatively
correlated with expression rates in genes that are
differentially expressed in cancer. It is hoped that mined
data together with molecular biology will help to
elucidate the biological pathways associated with
cancer, with the ultimate goal of biomedical applications
in drug design, useful biomarkers for diagnostics and
improved patient health.

Materials and methods

Protocol for SNP data mining

Data classification Human ESTs from dbEST (http://
www.ncbi.nlm.nih.gov/dbEST/) were extracted using the
ACNUC sequence retrieval system (Gouy et al., 1985). ESTs
were classified according to their UNIGENE library accession
number (http://ftp.ncbi.nih.gov/repository/UniGene/). The
Evoke ontology (http://www.egenetics.com/evoke.html) was
used to classify the libraries through a number of criteria such
as tissue origin and pathological context including tumoral
state. A total of 5135 ‘tumoral’ and 2503 ‘normal’ (i.e.
nonpathological) libraries were catalogued. Our approach to
EST clustering used the human genome as a reliable guide.
ENSEMBL RNAs annotated on human genome assembly
(http://www.ensembl.org/release 16.3) were used as a back-
bone for the clustering of dbEST sequences using BLASTN
(Altschul et al., 1997) (alignment length X100 bp and

Figure 1 Structure of DNCL1 and location of the G79C amino-acid substitution. (a) Molecular surface representation of the DNCL1
homodimer (PDB code: 1F3C). The peptide-binding grooves of the DNCL1 dimer are highlighted (light blue). Residue Gly79 (red
asterisks) affected by genetic variation in tumoral context is located in a pocket at the top of the target-binding channel. (b) Surface
diagram highlighting the location of the Gly79 residue (red) using the structure of the DNCL1 monomer (PDB code: 1PWJ). Colour-
coded amino acid surface denote residue functions: dark blue denotes both dimer interface and peptide binding and light blue denotes
peptide binding. Substitution G79C (red) occurs in a b turn located at the top of the binding groove. This replacement is
nonconservative and predicted to severely affect protein function (see text)
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similarity X95%). Best hit matches were subsequently selected
in order to reduce false assignment to paralogous sequences.

SNP detection We have developed an algorithm to identify
exonic SNPs in multiple alignments of various ESTs associated
to a particular annotated transcript. This algorithm takes
advantage of EST library redundancy and performs four filters
to reduce the effect of sequencing inaccuracies at each position.
The first filter required that each position within a multiple
alignment of ESTs should have an exact match with the
reference RNA (windows length¼ 10 bp around each variant
position). The second filter considered a position as informa-
tive if the number of libraries in the multiple alignment was
superior to a fixed minimum threshold (library number X5).
The third filter of the algorithm required the variant to be
found at least two times independently, that is, in two different
libraries. A last independent filter that required a minimum of
two variant ESTs in one of the libraries was subsequently

added in order to increase further the stringency of the mining
strategy.

SNP information

We associated detection method information (reference and
variant EST depth coverage) and nucleotide substitution
features (codon conservation analysis: synonymous/nonsynon-
ymous replacement, transition/transversion, position in codon)
for the SNPs that have been filtered out. In order to provide
information on protein features: amino-acid position of the
variant, conservative/nonconservative amino-acid modifica-
tion and protein family domains (including Interpro) were
extracted from Ensembl (http://www.ensembl.org/).

Cancer association

Finally, nsSNPs for which EST counts were available for
testing variant over-representation in tumoral context

Figure 2 Characterization of DNCL1/G79C amino-acid substitution. (a) Coomassie-blue staining of the SDS–PAGE gel showing the
binding of GST-BS69 to the wild-type DNCL1 and the G79C mutant, respectively. Purified DNCL1 and its G79C mutant were used as
input in each pull-down assay, respectively. Purified GST was used as the negative control of the binding. One can notice that GST
showed some background level of binding to DNCL1. (b) Superposition plot of the 1H, 15N HSQC spectra of the wild type (red) and
the G79C mutant (green) forms of DNCL1. The assignment of the wild-type DNCL1 is labelled with each amino-acid residue name
and number. (c) Plot of chemical shift changes as a function of the residue number of DNCL1 induced by the G79C mutation. The
combined 1H and 15N chemical shift changes are defined as: Dppm¼ [(DdHN)2þ (DdN� aN)2]1/2 Where DdHN and DdN represent chemical
shift differences of amide proton and nitrogen chemical shifts of the wild-type DNCL1 and the G79C mutant, respectively. The scaling
factor (aN) used to normalize the 1H and 15N chemical shifts is 0.17. The secondary structure of DNCL1 is indicated on the top of the
plot. The inset shows the amplitude (in pseudocolour scale) of the mutation-induced chemical shift changes of DNCL1 mapped onto
the 3D structure of the DNCL1 dimer
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(n¼ 8336) were retained for a one-sided Fisher’s exact test
(Po0.01). We privileged the counting of ESTs rather than a
count per library because of the frequent lack of precision
concerning the origin of the source tissues and the use of
pooled samples. To adjust P-values produced by Fisher’s exact
test for multiple testing, three approaches were used: (a)
Bonferroni and (b) Benjamini and Hochberg corrections,
which are very conservative methods for controlling the false
discovery rate, and (c) a resampling procedure. The standard
Bonferroni correction multiplies the uncorrected P-value by
the number of statistical tests. The Benjamini and Hochberg
correction consists of ranking all P-values in increasing order
and adjusting each by multiplying by the total number of tests
and dividing by the rank of that P-value. The resampling
procedure simulates the distribution of the minimum P-value
that we would expect if there was no association with cancer.
To do this, reference and variant margins were fixed at each
SNP; Fisher’s exact test was then performed for 1000
resampled data sets, and the smallest P-value was recorded.
This resampling procedure was repeated for n¼ 8336 SNPs,
from which an empirical distribution of the minimum P-value
was obtained. From this distribution, we estimated the P-value
that corresponded to the conventional 5% threshold.

The intensity of the bias of tumoral versus normal allele
frequency was calculated according to the following formula:

Ib ¼ ða=V � ½T � a�=RÞ

where ‘a’ is the number of tumoral variants, ‘V’ the total
number of variants, ‘T’ the sum of tumoral counts (variant
plus reference) and R is the total number of reference alleles (Ib
being close to 1 in case of strong association).

Predicted protein activity

Polyphen (http://tux.embl-heidelberg.de/ramensky/polyphen.
cgi) and SIFT (http://blocks.fhcrc.org/sift/) algorithms were
employed to predict the impact of amino-acid substitutions on
protein activity. Default parameters values of these programs
were used.

Cancer gene list

The selection of cancer genes has been drawn from review of
the published literature on the molecular determinants of
cancer and from the following links: http://www.cancerindex.

org/geneweb/genes_a.htm/; http://bit.fmrp.usp.br/jamborestes/
and http://caroll.vjf.cnrs.fr/cancergene/Aonco_consult.html/.
The complete list is available at

ftp://pbil.univ-lyon1.fr/pub/GeM/oncogene/cancergenes.txt.

DNCL1(G79C) characterization

Expression and purification of recombinant proteins Prepara-
tion of pure recombinant DNCL1 was described in our earlier
work (Fan et al., 1998). The G79C mutation of DNCL1 was
generated using standard PCR-based mutagenesis method.
The mutant DNCL1 was prepared using the identical method
as for the preparation of the wild-type protein. GST-fused,
DNCL1-binding proteins including BS69 and Bim were
prepared as described earlier (Lo et al., 2001).

Pull-down and peptide competition experiments Direct inter-
actions between DNCL1 and various GST-fused proteins were
assayed in PBS buffer, pH 7.4. Equal molar amounts of
DNCL1 and one of the GST-fusion proteins (B2 nM each)
were mixed in 750ml of the assay buffer. The GST-fusion
protein/DNCL1 complexes were pelleted by 30ml of fresh
GSH–Sepharose beads. The pellets were washed three times
with 1.0ml of the assay buffer, and subsequently boiled with
30 ml of 2� SDS–PAGE sample buffer. The intensity of the
DNCL1 band on SDS–PAGE gels was used to judge the
strength of the interaction between DNCL1 and various GST-
fusion proteins.

NMR experiments 1H-15N HSQC spectra of 15N-labelled
DNCL1 and its G79C mutant were acquired on a Varian
Inova 750MHz spectrometer equipped with a z-gradient
shielded triple resonance probe. All NMR spectra were
recorded at 301C, with a protein concentration of B0.3mM

dissolved in 100mM potassium phosphate buffer, pH 7.0.
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