Crystal Structures of the scaffolding protein LGN reveal the general mechanism by which GoLoco binding motifs inhibit the release of GDP from G\textsubscript{\alpha} subunits in G-coupled heterotrimeric proteins*

Min Jia1,5, Jianchao Li3,5, Jinwei Zhu1,3, Wenyu Wen1, Mingjie Zhang3,4,*, and Wenning Wang1,*

1From Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry and Institute of Biomedical Sciences, 2Department of Pharmacy, Fudan University, Shanghai 200433, China

3Division of Life Science, State Key Laboratory of Molecular Neuroscience, 4Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

*Running title: Crystal Structures of LGN GoLoco/G\textsubscript{\alpha}, Complex

5These two authors contributed equally to this work

*Corresponding authors

Mingjie Zhang
Division of Life Science, Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong
Tel: +852-23588709
Email: mzhang@ust.hk

Wenning Wang
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry and Institute of Biomedical Sciences
220 Handan Road, Shanghai 200433, China
Tel: +86-21-65643985; Fax: +86-21-65641740
Email: wnwang@fudan.edu.cn

Keyword: G protein; GoLoco; LGN; GDI; Crystal structure
Background: GoLoco (GL) motif binds to Gα and inhibits its guanine nucleotide dissociation.

Results: Crystal structures of LGN-GL3(4)/Gαi1(3) complexes reveal a "double Arg-finger"-mediated GDP recognition mechanism which is distinct from that shown in the RGS14/Gαi complex.

Conclusion: LGN-GL/Gαi interaction might represent a general binding mode between GoLoco motifs and Gαi.

Significance: Our findings shed new light on the GoLoco motif-mediated G-protein signaling regulation.

SUMMARY

GoLoco (GL) motif-containing proteins regulate G-protein signaling by binding to Gα subunit and acting as guanine nucleotide dissociation inhibitors (GDI). GLs of LGN are also known to bind GDP form of Gαi/o during asymmetric cell division. Here, we show that the C-terminal GL domain of LGN binds four molecules of Gαi-GDP. The crystal structures of Gαi-GDP in complex with LGN GL3 and GL4, respectively, reveal distinct GL/Gαi interaction features when compared to the only high-resolution structure known GL/Gαi interaction between RGS14 and Gαi. Only a few residues C-terminal to the conserved GL sequence are required for LGN GLs to bind to Gαi-GDP. A highly conserved double Arg-finger sequence ("R-Y-D/E-D/E-Q-R") is responsible for LGN GL to bind to GDP bound to Gαi. Together with the sequence alignment, we suggest that the LGN GL/Gαi interaction represents a general binding mode between GL motifs and Gαi. We also show that LGN GLs are potent GDIs.

The α subunit of the heterotrimeric G proteins (Gα) is a critical component of the G protein signaling pathway, in which Gα cycles between the GDP and GTP bound states (1). In the canonical signaling model, ligand-mediated activation of G-protein coupled receptors (GPCR) catalyzes the exchange of GDP for GTP in binding to Gα and subsequently results in the dissociation of Gα-GTP from Gβγ heterodimer (2,3). The dissociated Gα-GTP binds to and activates downstream effectors, thus transducing signals from GPCR (4-6). Since Gα has intrinsic GTPase activity, the Gα subunit subsequently returns to the Gα-GDP form which marks the termination of the GPCR signaling. Many proteins have been discovered as regulators of the GTP- and GDP-bound forms of the Gα reaction cycle. Among these, GoLoco motif proteins were discovered to bind specifically to GDP-loaded Gα or Gα and inhibit the spontaneous release of GDP from Gα. These GoLoco proteins are referred to as guanine nucleotide dissociation inhibitors (GDI) (7-11).

The GoLoco motif (8,12,13) was first identified as a conserved sequence of 19 amino acids, occurring singly or as tandem repeats in a variety of signaling proteins across the animal kingdom (7). Our understanding of the molecular mechanism of the GDI function of GoLoco proteins is mainly based on the crystal structure of RGS14 GoLoco bound to Gαi1-GDP (14), which shows that the conserved GoLoco motif and its variable C-terminal tail interact with the Ras-like and all-helical domains of Gαi1, respectively. A so-called “arginine finger” formed by the highly conserved ‘D/E-Q-R’ triad in the conserved GoLoco motif extends into the GDP binding pocket and directly contacts the α- and β-phosphates of GDP (14). This structure
and the subsequent mutagenesis and structural studies (14-18) suggested an appealing hypothesis: the highly variable C-terminal sequences following the conserved GoLoco motifs and the all-helical domain of Ga subunits are likely the specificity determinants of interactions between GoLoco motifs and different Ga subunits. However, since there are no structures of GoLoco motifs in complex with Ga other than the Ga$_i$/RGS14 complex are available to date, the above hypothesis remains untested.

LGN is a multi-domain scaffolding protein containing eight tetratricopeptide (TPR) repeats in its N-terminal region, a flexible linker sequence in the middle, and four GoLoco motifs in the C-terminal end(19,20). LGN is an evolutionarily conserved protein (Pins in *Drosophila*, and GPR1/2 in *C. elegans*) that plays crucial roles in regulating spindle orientations during asymmetric cell division (19,21), and can be considered as an example member of the multiple GoLoco motif protein family. It forms a ternary protein complex with nuclear mitotic apparatus protein NuMA (Mud in *Drosophila* and Lin5 in *C. elegans*) and cortical membrane-bound Ga$_i$ via its TPR repeats and GoLoco motifs, respectively (22-28). The central linker of LGN binds to the guanylate kinase domain of the DLG family scaffold protein in a phosphorylation-dependent manner (29-31). In *Drosophila* neuroblast, loss of Pins or Ga$_i$ affects cell polarity as well as mitotic spindle orientation (32). In mammals, overexpression or removal of LGN results in dramatic spindle rocking in metaphase and improper spindle pole organization (19,21,33). The binding of Ga$_i$ through the GoLoco motifs was shown to regulate the cortical localization of LGN (33). Thus the LGN GoLoco motifs can be viewed as scaffolding modules in tethering LGN’s TPR repeats partners (e.g. NuMA/Mud and mInsc/Insc) to cell cortex via binding to membrane attached Ga$_i$. Interestingly, the GoLoco motifs of LGN can directly bind to TPR repeats intra-molecularly, thus keeping LGN in an auto-inhibited conformation (22). Ga$_i$-GDP binding to GoLoco motifs releases the auto-inhibited conformation of LGN and renders LGN TPR repeats capable of binding to NuMA (22,34), although the mechanistic basis of the LGN auto-inhibition is unknown.

In this study, we performed detailed biochemical and structural analyses of the interactions between LGN GoLoco motifs and Ga$_i$-GDP. We demonstrate that in contrast to the RGS14/Ga$_i$-GDP interaction, only a few residues of the highly variable sequences C-terminal to the conserved GoLoco motifs of LGN are involved in binding to Ga$_i$-GDP. The structures of two LGN GoLoco motifs in complex with Ga$_i$ reveal a “double Arg-finger” sequence (“R-Ψ-D/E-D/E-Q-R”) within the GoLoco motif that is specifically involved in the GDP coordination. We further show that the LGN GoLoco/Ga$_i$-GDP interaction observed in this study likely represents a general mode of GoLoco motif-mediated Ga$_i$ bindings. We further demonstrate that the LGN GoLoco motifs are potent GDIs. Thus the LGN GoLoco motifs can function as a Ga/LGN/NuMA/Insc scaffold as well as a regulator of Ga$_i$ signaling in asymmetric cell division.

Experimental Procedures

Protein Expression and Purification

The human Ga$_i$3, Ga$_i$1, mouse LGN GL fragments were individually cloned into a modified version of pET32a vector. All the mutations were created using the standard PCR-based method and confirmed by DNA
sequencing. Recombinant proteins were expressed in *Escherichia coli* BL21 (DE3) host cells at 16 or 37 °C and were purified by using a Ni²⁺-NTA agarose affinity chromatography followed by size-exclusion chromatography. For *in vitro* biochemical analysis, LGN GLs were expressed as the GST-fused proteins and purified by GSH-Sepharose affinity chromatography. *Isothermal Titration Calorimetry Measurements*

ITC measurements were performed on an ITC200 Micro calorimeter (MicroCal) at 25 °C. All protein samples were dissolved in the buffer containing 50 mM Tris, pH 8.0, 100 mM NaCl, and 1 mM EDTA. The titrations were carried out by injecting 40 μL Gαi3·GDP aliquots (0.2 mM) into LGN GLs fragments fused to the C-terminal end of thioredoxin (0.02 mM) at time intervals of 2 minutes to ensure that the titration peak returned to the baseline. The titration data were analyzed using the program Origin7.0 from MicroCal. *Fluorescence Polarization Assay*

Fluorescence polarization assay were performed on a PerkinElmer LS-55 fluorimeter equipped with an automated polarizer at 25 °C. Commercial synthesized peptides were labeled with fluorescein-5-isothiocyanate (Invitrogen, Molecular Probe) at N-termini. In a typical assay, the FITC-labeled peptide (~1 μM) was titrated with binding partners in a 50 mM Tris, pH 8.0 buffer containing 100 mM NaCl, 1 mM DTT, and 1 mM EDTA. The K_D values were obtained by fitting the titration curves with the classical one-site binding model, with or without invoking the Hill coefficient model. *GST Pull-Down Assay*

For GST pull-down assay, GST or GST-tagged proteins (60 μl from 1 mg/ml stock solutions) were first loaded to 40 ml GSH-Sepharose 4B slurry beads in an assay buffer (50 mM Tris, pH 8.0, 100 mM NaCl, 1 mM DTT, and 1 mM EDTA). The GST fusion protein-loaded beads were then mixed with potential binding partners, and the mixtures were incubated for 1 hr at 4 °C. After three times washing, proteins captured by affinity beads were eluted by boiling, resolved by 15% SDS-PAGE, and detected by Coomassie blue staining. *Analytical Gel Filtration Chromatography*

Analytical gel filtration studies were carried out on an AKTA FPLC system (GE Healthcare). Proteins at concentration of 10–20 μM in a volume of 100 μl were loaded on a Superose 12 10/300 GL column 20 (GE Healthcare) equilibrated with the buffer containing 50 mM Tris, pH 8.0, 100 mM NaCl, 1 mM DTT, and 1 mM EDTA. Protein elution was detected by absorbance at 280 nm. *GDI activity Assay*

Measurements of AlF₄⁻ induced increase of intrinsic tryptophan fluorescence were performed on the PerkinElmer LS-55 spectrometer with excitation at 292 nm and emission at 342 nm. Purified Gαi3 protein was diluted in 2-ml cuvettes to 200 nM in a pre-activation buffer (100 mM NaCl, 100 μM EDTA, 2 mM MgCl₂, 20 μM GDP, 20 mM Tris-HCl, pH 8.0) and incubated at 30 °C. At the time points 400 and 500 sec after Gαi3 dilution, 2 mM NaF and 30 μM AlCl₃ (final concentrations) were added respectively to the reaction mixture, and fluorescence intensity changes as a function of time were recorded. The GDI activities of GL peptides were assayed by repeating the above procedure except that the reaction mixtures contained defined concentrations of specific peptides.

The measurements of GTPγS binding were also performed on PerkinElmer LS-55 spectrometer with excitation at 485 nm and
emission at 530 nm (slit widths each at 2.5 nm). BODIPY FL-GTPγS was diluted to 1 μM in buffer (20 mM Tris-HCl, pH 8.0, 1 mM EDTA and 10 mM MgCl₂) and equilibrated to 30 °C in 2-ml cuvettes. Purified Ga₃ was diluted to 100 nM in the buffer (100 mM NaCl, 100 μM EDTA, 2 mM MgCl₂, 20 μM GDP, 20 mM Tris-HCl, pH 8.0) and pre-incubated with GL peptides (with different concentrations) at 30 °C for 10 min before the addition to the cuvette. Relative fluorescence levels were set to zero at the average fluorescence reading over the first 70 s, and Ga₃/GL mixtures were added at the time point of 100 sec.

Crystallography

Crystals of the Gaᵢ₁(3) in complex with GL3/4 (diluted to 7.5 mg/ml in 50 mM Tris, pH 8.0, 100 mM NaCl, 1 mM EDTA, 1 mM DTT, 10 mM Mg²⁺, 20 μM GDP buffer) were obtained by the hanging drop vapor diffusion method at 18 °C. The crystals were grown in buffer containing 0.5 M ammonium sulfate, 1.0 M lithium sulfate monohydrate, 0.1 M sodium citrate tribasic dehydrate, pH 5.6. Crystals were soaked in crystallization solution containing a higher concentration (1.5 M) of lithium sulfate for cryo-protection. All the diffraction data were collected at Shanghai Synchrotron Radiation Facility BL17U at wavelength of 0.9793 Å using a single crystal of each complex. The diffraction data were processed and scaled using HKL2000 (35). Molecular replacement was used to solve the structure of Gaᵢ₁(3)/GL4(3) with the program Molrep (36). The crystal structure of RGS14/Gaᵢ₁ complex (1KJY) was used as a search model by removing the RGS14 peptide. The initial model was rebuilt manually and then refined using REFMAC (37) and PHENIX (38) against the whole data set. Further manual model building and adjustment were completed using COOT (39). The final refinement statistics are summarized in Table I.

Results
Mapping the minimal Gaᵢ-GDP binding sequences in LGN GoLoco motifs

The C-terminal region of LGN contains four GoLoco motifs, each of which consists of a conserved 19-residue fragment followed by a stretch of variable amino acid residues with different lengths (Fig. 1A). We define the full-length GoLoco motif to be the conserved 19-residue plus all of the following C-terminal sequence before the start of the next GoLoco motif core. With this definition, each GL1, 2, 3 and 4 motif of LGN consists of 54, 51, 34 and 51 residues, respectively (Fig. 1A). Previous structural study of the Gaᵢ₁/RGS14-GoLoco complex showed that the 16-residue sequence C-terminal to the GoLoco core motif make extensive contacts with Gaᵢ₁ and thus are essential for the interaction between Gaᵢ₁ and RGS14 (14). To understand the interaction between LGN and Gaᵢ₁, we set out to map the minimal Gaᵢ-GDP binding sequence of each LGN GL. We first used GST-fused LGN GL with different lengths to pull down purified Gaᵢ₁-GDP in our binding assay. This assay showed that each GL containing only the 19-residue core displayed only a background level of binding to Gaᵢ₁-GDP (Fig. 1B). Obvious binding of Gaᵢ₁-GDP to GL1 and GL4 was observed by extending the conserved 19-residue core by 2 residues (Fig. 1B). Any one of LGN GLs with length equal to or longer than 25 residues displayed comparable bindings to their corresponding full-length motifs (Fig. 1B). We next measured the quantitative binding affinities of each of the four GLs to Gaᵢ₁-GDP using isothermal titration calorimetry or fluorescence spectroscopy. Such quantitative binding assays revealed that the
four full-length GLs share similar affinities (K_D: 54 ~ 96 nM) in binding to α_i-GDP (Fig. 1C). In agreement with the results derived from the pull-down binding assay, each LGN GL with a length of 25 residues has an essentially same binding affinity compared to the corresponding full-length motif (Fig. 1C), indicating that each of the 25-residue LGN GL contains the complete α_i-GDP binding sequence. This finding is in sharp contrast to the interaction between α_i-GDP and the RGS14 GoLoco motif, which requires a total length of 35 residues (14). Consistent with earlier studies (40), the LGN GLs bind to α_i-GTPγS with a ~100-fold weaker affinity than to α_i-GDP (data not shown).

α_i-GDP can simultaneously bind to all four LGN GLs

We next asked whether α_i-GDP can simultaneously bind to the multiple GLs of LGN. We first tested the interaction between α_i-GDP and the LGN GL34 tandem (aa 587-650), as the intervening sequence between the core sequences of GL3&4 are the shortest (15 residues to be exact, Fig. 1A). According to the structure of α_i/RGS14 complex (14), two successive GL core sequences separated by a 15-residue linker cannot bind to two α_i as the bound α_i molecules would crash into each other. We examined the binding stoichiometry between LGN-GL34 and α_i-GDP using analytical gel-filtration chromatography. Upon addition of 2 or 3 molar ratios of α_i to GL34, a peak corresponding to a (α_i-GDP)$_2$/GL34 complex was detected (Fig. 2A), indicating that the two GLs in GL34 can simultaneously bind to α_i-GDP. To further substantiate that the elution peak at ~11.60 ml in Fig. 2A represents the 2:1 stoichiometric complex formed between α_i-GDP and GL34, we used two GL34 mutants (L594E and I628E), in which either the α_i-GDP binding site on GL3 (the L594E mutant) or on GL4 (the I628E mutant) was disrupted. On the gel-filtration column, the 1:2 mixtures of the two GL34 mutants with α_i-GDP were eluted at a volume significantly larger than the wild type GL34 and a large portion of free α_i-GDP was also detected (Fig. 2B), presumably that the GL34 mutants only formed 1:1 stoichiometric complex with α_i-GDP. This result also confirms that the wild type GL34 can form a 1:2 stoichiometric complex with α_i-GDP. Further lengthening of the linker between GL3 and GL4 by inserting ten flexible residues (five GS repeats, referred to as “GL34Ins5GS”) did not alter the elution profile of its complex with α_i-GDP (data not shown), indicating that the 15-residue intervening sequence between GL3 and GL4 is sufficiently long for two molecules of α_i-GDP to bind simultaneously to GL34. Similarly, two molecules of α_i-GDP are capable of binding to LGN-GL12 (aa 483-586) or GL23 (aa 537-620). (Fig. 2C&D). Additionally, three molecules of α_i-GDP were found to bind simultaneously to GL123 (aa 483-620) or GL234 (aa 537-650) of LGN (Fig. 2E&F).

To characterize the binding stoichiometry more precisely, ITC analyses were performed. The titration profiles of α_i-GDP to GL23 and GL34 can be well fitted with the ‘one set of identical sites’ model, yielding the overall stoichiometry of 1.9:1 and 1.8:1, respectively (Fig. 3A&B, Table II), consistent with the binding stoichiometry derived from the gel-filtration analyses. The apparent binding affinity of GL23 was similar with those of the individual GoLocos, while GL34 had a weaker binding affinity than that of GL3 or
GL4 (Table II, Fig. 1C). The titration profile of Ga3-GDP to the triple-GoLoco-containing protein GL234 was also fitted with the ‘one set of binding sites’ model, giving a weaker binding affinity of ~ 358 nM and the binding stoichiometry of 3:1:1 (Fig. 3C, Table II). The purified GL234 protein underwent slight degradation, which might affect the accuracy of the binding affinity measurement. The titration profile of Ga3-GDP to GL12, however, was best fitted with the model that assumes two sets of binding sites (Fig. 3D), yielding one strong site (KD ~ 11 nM) and one weak site (KD ~ 188 nM) (Table II). The ITC titration profile of Ga3-GDP to GL123 was also fitted with the ‘two sets of binding sites’ model, giving rise to two strong sites (KD ~ 4 nM) and one weak site (KD ~ 186 nM) (Fig. 3E, Table II). Similar atypical profiles of ITC titrations were also observed in the analyses of AGS3-GLs/Ga3-GDP interaction (41). It is worth noting that these data analyses do not represent the complete description of the thermodynamics of the interactions between tandem LGN-GoLoco repeats and Ga3-GDP, in which inter-site cooperativity likely exists. Since the full-length GoLoco region of LGN, i.e. GL1234, suffers from severe degradation, we did not analyze the binding property of GL1234 directly. However, the ITC titration data, consistent with the gel-filtration analyses, strongly suggested that the full length LGN binds Ga3-GDP with a stoichiometry of 1:4. The four GoLoco motifs of LGN have intrinsically similar binding affinities to Ga3-GDP. To explore the molecular details of the binding, we proceeded to determine the crystal structure of Ga3/LGN-GoLoco complex.

Extensive efforts have been put to screen various constructs of the four LGN GLs in complex with GDP-loaded Ga3 or Ga11, and we succeeded in obtaining well-diffracting crystals for synthetic GL4 (62)DEDFFSLILRSQAKRMDEQRVLQR and GL3 (58)DEDFFDLVKCQGSRLDQRCAPPSS11 peptides in complex with Ga13-GDP. The Ga3/GL4, Ga3/GL4 and Ga3/GL3 complexes diffracted to 2.9, 3.5 and 3.6 Å resolutions, respectively (Table I). According to a previous structure-based protein design study, point mutations on Ga3 (E116L, Q147L and E245L, respectively) can enhance its binding affinity to various GLs (15). We therefore constructed such three Ga3 mutants, hoping that the mutants might have higher affinities in binding to LGN GLs and thus yield better quality complex crystals. Opposite to our expectation, none of these mutants showed obviously enhanced binding to LGN GLs (data not shown). Nonetheless, the Q147L-Ga3 mutant/GL4 complex yielded better diffracting crystals (2.9 Å) than the wild type Ga3/GL4 complex.

The structure of Ga1(3)/GL4 and Ga13/GL3 were solved by molecular replacement using the Ga3/RGS14 structure as the search model (PDB ID: 1KJY) (14). The Ga3-GDP structure is well defined, and 21~22 amino acids of the GL3 or GL4 peptide are ordered in the structures of complexes (Fig. 4A, B). The structures of Ga3 in the Ga3/GL4 and Ga3/GL3 complexes are highly similar to that in the Ga3/RGS14 complex (RMSD of 0.67 Å), except for the Switch II region, which is shifted further away from the LGN-GL peptides due to the presence of two bulky hydrophobic residues in the GL peptides (Fig. 5A&B). The GL peptides in the three complexes adopt highly similar structures
(Fig. 4C). The N-terminal 10 residues of each LGN GL peptide (aa 623-632 of GL4 and aa 589-598 of GL3), which corresponds to the first half of the conserved 19-residue GL core, forms an α-helix which occupies the cleft between the Switch II and α3 of Ga (Fig. 4A). The following 8 residues of the GL core (aa633-640 of GL4 and aa599-606 of GL3) forms a “lid” in covering GDP. Only 3-4 residues C-terminal to the GL core (aa641-643 of GL4 and aa607-610 of GL3) were found to bind to the all-helical domain of Ga (Fig. 4). The structures of the LGN GL peptides in complex with Ga are entirely consistent with our biochemical data showing that extending of the conserved GL core at the C-terminal end by 3-4 residues is necessary and sufficient for LGN GLs to bind to Ga (Figs. 1&2). The structures of the complexes also indicate that LGN GLs should function as GDIs by directly stabilizing the bound GDP as well as the interaction between the Ras-like domain and the all-helical domain of Ga (Fig. 4A).

A general interaction mode revealed by the LGN GLs in complex with Ga

Although the structures of Ga bound to the GLs of RGS14 and LGN are highly similar, the conformation of Ga-bound GLs of RGS14 and LGN are distinctly different (Fig. 5). First, a 16-residue fragment C-terminal to the conserved GL core of RGS14 is required for binding to Ga, and this 16-residue fragment forms ordered structure and has extensive interactions with the all-helical domain of Ga (14). In LGN-GL4/GL3, in contrast, only 3-4 residues C-terminal to the GL core are required for binding to Ga (Fig. 4A). Second, the orientation of the variable C-terminal tail of the RGS14 GL peptide is opposite to that of the LGN GL peptides (Fig. 5A). In the LGN GL4/Ga complex, the hydrophobic side chains of V641, L642 and L643 interact with V72 and Y69 from the αA helix of the Ga all-helical domain, thus the C-terminal end of GL4 extends towards the N-terminal end of Ga αA (Fig. 5C). Residue corresponding to V641 in the RGS14 peptide is G517 (Fig. 5D and Fig. 6A). The backbone carbonyl oxygen of G517 forms two hydrogen bonds with side chains of S75 and Q79 from Ga αA. The unique backbone dihedral angles (φ = 78°, ψ = -171°) of G517, which are not allowed by other amino acids, enable the C-terminal tail of the RGS14 GL peptide to take a sharp turn at this position and extend to the C-terminal end of Ga αA (Fig. 5A&D). Sequence alignment of all known GLs from mammals reveals that only the GLs of RGS14 and RGS12 contain a Gly right after the conserved core motif, and the C-terminal residues of these two GLs share the identical sequence (Fig. 6A). The above structure-based amino acid sequence analysis suggests that the LGN GL/Ga interactions observed in this study represent the general mode of the interactions between GoLoco proteins and Ga. RGS14 and RGS12, instead, may represent a special sub-class of GoLoco proteins in terms of Ga binding.

The “double Arg-finger”-mediated GDP binding of LGN GLs

The structure of the Ga/RGS14 GL complex shows that a highly conserved “D/E-Q-R” triad at the C-terminal end of the conserved GL core plays a critical role in binding to Mg2+-GDP (14). Similar to the Ga/RGS14 GL interaction, the side chain of R640 (R606) of GL4 (GL3) in the ‘D/E-Q-R’ triad, which is equivalent to R516 of RGS14, is inserted into the GDP binding pocket and binds to α-phosphate of
GDP (Fig. 6B). However, there is a distinct feature of GL4/GL3 in GDP binding with respect to RGS14 GL. Another highly conserved Arg five residues upstream of the Arg in the “D/E-Q-R” triad in LGN GL peptides (R635 in GL4 and R601 in GL3) binds to the α and β phosphates of GDP (Fig. 6B). In RGS14 GL, the residue corresponding to this second Arg is a Gly, and a Mg²⁺ ion was found to be necessary to stabilize the β phosphates of GDP (14). Therefore, different from RGS14, LGN GLs use two Arg residues instead of one to bind to and stabilize GDP. The structures of the LGN GLs in complex with Gα further indicate that the LGN GLs can bind to GDP-bound Gα independent of the presence of Mg²⁺. This structure-based prediction is confirmed by direct binding experiment (data not shown). Sequence alignment analysis reveals that, except for RGS14 GL, the rest of GLs all contain a “R/K-X-D/E-D/E-Q-R”, GDP binding sequence (Fig. 6A), and we refer this sequence as the “double Arg-finger”. This sequence analysis further supports that the LGN GL/Gα interaction represents the general mode of GL-mediated binding to Gα.

The double-arginine fingers are critical to the GDI activities of LGN-GLs

To confirm the functional importance of the two Arg in the double-arginine finger in LGN GLs, we performed point mutations of the two arginines, and tested the Gα-GDP binding affinities and GDI activities of these mutants. Single substitution mutations (R635G, R635A, and R640A) caused ~50-fold decrease in GL4’s binding to Gα-GDP, and the double mutation (R635,640A) led to ~500-fold Gα-GDP binding affinity decrease (Fig. 6C). Similar results were also obtained from the other LGN GLs, indicating that the two conserved arginine fingers are critical for binding of Gαi-GDP to LGN-GLs. This finding is in contrast to the RGS14 GL, in which the substitution of the Arg in the finger with Ala or Leu did not decrease the binding affinity of RGS14 to Gαi-GDP (14). Careful examination of the crystal structures of Gα in complex with LGN GL peptides revealed that the side chains of the two Arg residues also form hydrogen bonds with V179 and T181 from Gα (Fig. 6B). In contrast, the side chain of R516 in RGS14 GL interacts exclusively with GDP (14).

The GDI activities of LGN GLs were evaluated by AlF₄⁻ induced increase of intrinsic tryptophan fluorescence of Gα and by direct binding of BODIPY-GTPγS to Gα. In agreement with the previous studies (40), the four GLs exhibited similar GDI activities (data not shown). Moreover, comparison of the GDI activities of GL peptides with different lengths showed that the 25-residue minimal Gα-binding GL fragments shown in Fig. 1 are also sufficient for their GDI activities (data not shown). Further quantification of the GDI activities using the association rate of BODIPY-GTPγS binding revealed IC₅₀ values of a few μM for LGN GLs, which is slightly weaker than that of RGS14 GL (data not shown). At a saturated concentration of GL peptide (GL: 200 μM, Gα: 0.2 μM), the wild type LGN-GL4 showed a complete inhibition of GDP dissociation from Gα (Fig. 6D). The R635G-GL4 or the R635A-GL4 displayed obviously weakened GDI activities, whereas the R640A-GL4 and R635,640A-GL4 had essentially no detectable GDI activity (Fig. 6D). Substitution of the first Arg (R601) in the double-arginine finger of GL3 with Ala or Gly also diminished its GDI activity (data not shown). Thus, we conclude that both
Arg in the double-arginine finger of LGN GoLoco motifs are important for their GDI activity.

Discussion

Both the binding to GDP-loaded Gα subunits and the GDI activity of GL require residues beyond the 19-residue conserved core sequence (14,41). Since the C-terminal flanking sequences of GLs are highly diverse among GoLoco proteins (7), it has been hypothesized that the variable C-terminal tail sequences of GLs are the specificity determinants governing GL/Gα interactions. In the present study, we demonstrate that only a few residues (3-4 aa) C-terminal to the conserved GL core are required for LGN GLs to bind to and to inhibit GDP dissociation of Gαi·GDP, a finding which is in sharp contrast to that of RGS14 GL. Sequence alignment analysis suggests that the conformation of the GL peptide in the Gαi1/RGS14 structure is likely a unique example of GL/Gα interaction. The LGN GL/Gαi interaction described in the current study instead is likely a general binding mode between GLs and Gα. The structures of LGN GLs in complex with Gαi-GDP also suggest that the short variable C-terminal sequences of LGN GLs are unlikely to determine their binding specificity to Gα subunits. Consistently, previous studies have shown that LGN GLs bind to all three forms of GDP-loaded Gαi (i1, i2, i3). As for the Gαi-GDP binding, discrepancies exist in the literatures. An early study by McCudden et al. reported that LGN GLs selectively bind to Gαi-GDP, but not to Gαs-GDP or Gαo-GDP (40). Recently, Kopein et al. found that LGN, as well as its *Drosophila* homolog Pins, can bind robustly to both GDP-loaded Gαi and Gαo (42).

We have demonstrated in this study that every one of the four LGN GLs can bind to Gαi-GDP with high affinity. Additionally, although the LGN GL peptides are much shorter than their counterpart from RGS14, LGN GLs also act as potent GDIs. The structures of the LGN GL3 and GL4 in complex with Gαi suggest that both the double-arginine finger and the short variable tail of the GL peptides are important for their GDI activities. The di-arginine finger makes extensive salt bridges with the phosphates of GDP, and the GDP in return makes contacts with both the Ras-like and all-helical domains of Gαi. The variable C-terminal tail of the GL peptides further interacts with the all-helical domain of Gαi. Thus, in addition to stabilize GDP bound to Gαi, the binding of GL peptide further promotes the closed conformation of Gαi (i.e. by restricting the opening of the all-helical domain and subsequent dissociation of GDP from Gαi, Fig. 7).

The characteristic multiple GLs in LGN and its *Drosophila* homolog Pins have been implicated to play a role in regulating their intra-molecular interactions between TPR repeats and GLs in response to the binding of Gαi-GDP and NuMA/Mud (34,43). Besides this, the multiple GLs in LGN (Pins) also function as a scaffold in regulating the localization of related protein complexes and organizing signaling pathways mediating spindle orientations. The detailed characterizations of interactions between LGN-GLs and Gαi-GDP in this work demonstrate that in its open state the four LGN GLs have equal capacity to bind to Gαi-GDP (Fig. 6E). In another word, the stoichiometry of LGN/Gαi-GDP complex *in vivo* likely depends on the concentration of Gαi-GDP, which in turn regulates the cortical localization of LGN-bound proteins, such as NuMA. Recently, it was found that the extrinsic GPCR Tre1 signaling determines
the orientation of cortical polarity in the asymmetric cell division of Drosophila neuroblast (44). Tre1 was shown to activate G^α_o, and the GTP form G^α_o can specifically associate with the first GL of Pins (44). Thus, the presence of multiple GLs allows Pins to function as a scaffold to simultaneously engage G^α_o- and G^α_i-mediated signaling events during asymmetric cell division.

References

FOOTNOTES
*We thank the Shanghai Synchrotron Radiation Facility (SSRF) BL17U for X-ray beam time. This work was supported by National Major Basic Research Program of China (2009CB918600, 2011CB808505), National Science Foundation of China (20973040, 31070642), Science & Technology Commission of Shanghai Municipality (08DZ2270500), and by grants (663808, 664009, 660709, 663610, 663811, HKUST6/CRF/10, and
SEG_HKUST06) from the Research Grants Council of Hong Kong to MZ. MZ is a Senior Fellow of the Institute for Advanced Study, HKUST. The atomic coordinates and structure factors (code 4G5O, 4G5Q, 4G5R, and 4G5S) have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ(http://www.rcsb.org/).
FIGURE LEGENDS

Fig. 1. Characterization of the bindings between Ga\textsubscript{iG}-GDP and the four LGN GLs. (A) Schematic diagram of the domain organization of LGN. “DBM” denotes the DLG-binding domain of LGN. (B) GST-pull down assay of the bindings between LGN GLs with variable lengths (indicated by the number at the top of each GL) with Ga\textsubscript{iG}-GDP. (C) ITC and fluorescence-based (denoted with stars) measurements of the binding affinities of Ga\textsubscript{iG}-GDP with LGN GLs of different lengths.

Fig. 2. Ga\textsubscript{iG}-GDP binding to multiple GL containing fragments of LGN analyzed by analytical gel-filtration chromatography. (A) The bindings of LGN-GL34 to different molar ratios of Ga\textsubscript{iG}-GDP. (B) The bindings of LGN-GL34(L594E) and LGN-GL34(I628E) to Ga\textsubscript{iG}-GDP. (C) The bindings of LGN-GL12 to Ga\textsubscript{iG}-GDP. (D) The bindings of LGN-GL23 to Ga\textsubscript{iG}-GDP. (E) The bindings of LGN-GL123 to Ga\textsubscript{iG}-GDP. (F) The bindings of LGN-GL234 to Ga\textsubscript{iG}-GDP.

Fig. 3. ITC analyses of the bindings of tandem GoLoco motifs to Ga\textsubscript{iG}-GDP. ITC measurements of bindings of Ga\textsubscript{iG}-GDP to LGN-GL23 (A), LGN-GL34 (B), LGN-GL24 (C), LGN-GL12 (D) and LGN-GL13 (E). The titration data were fitted with the “one set of binding sites” or “two sets of binding sites” models. The derived thermodynamic parameters are shown in Table II.

Fig. 4. Crystal structures of Ga\textsubscript{i1} in complex with GL4 and GL3, respectively. (A) Ribbon diagram showing the crystal structure of LGN-GL4 in complex with Ga\textsubscript{i1}-GDP. GDP is shown in the ball-and-stick model. All-helical domain and Ras-like domain of Ga\textsubscript{i1} is shown in wheat and light grey, respectively. The three switches are shown in violet, and the GL4 peptide is shown in cyan. (B) The F_o-F_c density map of GL4 peptide are shown in green and contoured at 3.0 \(\sigma \). (C) Comparison of the structures of the Ga\textsubscript{i1}/GL4, Ga\textsubscript{i3}/GL4 and Ga\textsubscript{i3}/GL3 complexes by superimposing the backbone atoms in the three structures. Ga\textsubscript{i1} is shown the same as in panel A, while Ga\textsubscript{i3} in complex with LGN-GL4 and with RGS14 are highlighted with violet and light blue, respectively. (D) Structure details of the sharp turn at G517 of RGS14 peptide. Hydrogen bonds formed between RGS14 and Ga\textsubscript{i1} are shown with dashed lines.

Fig. 5. Comparison of the crystal structures of Ga\textsubscript{i4}/GL4 and Ga\textsubscript{i4}/RGS14 complexes. (A) Comparison of the crystal structure of Ga\textsubscript{i4}/GL4 (cyan) with that of Ga\textsubscript{i4}/RGS14 (green). The all-helical domain and Ras-like domain of Ga\textsubscript{i4} are colored wheat and light grey, respectively. The Switch I, II and III regions of Ga\textsubscript{i4} in complex with LGN-GL4 and with RGS14 are highlighted with violet and light blue, respectively. (B) Comparison of the structural details of the \(\alpha \)-helical region of LGN-GL4 and RGS14-GL, showing that the larger hydrophobic side chains of LGN-GL4 result in the shift of the Switch II of Ga\textsubscript{i4}. (C) Structure details of the C-terminus of LGN-GL4, showing that two backbone hydrogen bonds stabilize the C-terminal conformation. (D) Structure details of the sharp turn at G517 of RGS14 peptide. Hydrogen bonds formed between RGS14 and Ga\textsubscript{i4} are shown with dashed lines.

Fig. 6. The double arginine fingers of the LGN GLs play a crucial role in GDP
coordination and GDI activity. (A) Sequence alignment of the GLs in mammalian GoLoco proteins. Absolutely and highly conserved residues are highlighted in red and yellow respectively. The residue right behind D/E-Q-R which determines the C-terminal direction is highlighted with blue triangle. The residues involved in the interactions with Go are labeled with a red star on the top. The di-arginine fingers are highlighted with black boxes. (B) Structural details of the GDP binding pocket in the Ga_i1/GL4 complex and Ga_i1/RGS14 complex. Polar interactions are shown with dashed lines. Distance of polar interaction is shown in magenta number (Å). The color scheme is the same as in Fig. 4A. (C) Binding affinities of the GL4 mutants with single or double substitutions of its two arginine residues to Ga_i3-GDP derived from fluorescence-based assays. (D) GDI activities of the wild type and mutant GL4 peptides measured with AlF_4^- induced increase of intrinsic tryptophan fluorescence. (E) Structural model of the LGN/Ga_i⋅GDP complex. TPR domain, the TPR-binding NuMA peptide and the GLs responsible for Ga_i⋅GDP binding are shown in blue, red and cyan respectively.

Figure 7 Comparison of Ga_i/GL4 structure with the structure of the fully activated Ga conformation derived from the β2-AR-Gαβγ structure. The all helical domain, Ras-like domain and three switches of GPCR bound Ga_i are shown in light blue, pink and yellow, respectively. Part of the GPCR (β2-AR) is shown in orange. The coloring of the Ga_i/GL4 complex is the same as in Fig. 4A.
Table I. Statistics of X-ray Crystallographic Data Collection and Model Refinement

<table>
<thead>
<tr>
<th>Data Sets</th>
<th>$Ga_{i3}^{Qsol.}$_GL4</th>
<th>Ga_{i1}_GL4</th>
<th>Ga_{i3}_GL4</th>
<th>Ga_{i3}_GL3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Group</td>
<td>P6,22</td>
<td>P6,22</td>
<td>P6,22</td>
<td>P6,22</td>
</tr>
<tr>
<td>Unit cell (Å)</td>
<td>a=207.3, c=236.6</td>
<td>a=207.4, c=236.7</td>
<td>a=209.6, c=237.2</td>
<td>a=209.7, c=235.5</td>
</tr>
<tr>
<td>No. of unique</td>
<td>66825</td>
<td>66971</td>
<td>39388</td>
<td>35265</td>
</tr>
<tr>
<td>reflections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution limit (Å)</td>
<td>50.00-2.90</td>
<td>50.00-2.90</td>
<td>50.00-3.50</td>
<td>50.00-3.60</td>
</tr>
<tr>
<td>(2.95-2.90)</td>
<td>(2.95-2.90)</td>
<td>(3.56-3.50)</td>
<td>(3.66-3.60)</td>
<td></td>
</tr>
<tr>
<td>Redundancy</td>
<td>10.8 (11.2)</td>
<td>9.4 (9.7)</td>
<td>4.4 (4.5)</td>
<td>9.2 (9.4)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>100 (100)</td>
<td>100 (100)</td>
<td>98.8 (99.9)</td>
<td>99.7 (100)</td>
</tr>
<tr>
<td>I/σ_I</td>
<td>27.5 (3.6)</td>
<td>25.1 (3.3)</td>
<td>14.7 (1.8)</td>
<td>37.6 (5.8)</td>
</tr>
<tr>
<td>R_{merge} (%)</td>
<td>9.8 (76.2)</td>
<td>9.6 (73.5)</td>
<td>11.0 (75.7)</td>
<td>7.3 (39.6)</td>
</tr>
</tbody>
</table>

Structure refinement

<table>
<thead>
<tr>
<th>Resolution range (Å)</th>
<th>43.04-2.90</th>
<th>47.69-2.90</th>
<th>49.65-3.50</th>
<th>39.63-3.62</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3.00-2.90)</td>
<td>(3.00-2.90)</td>
<td>(3.61-3.48)</td>
<td>(3.75-3.62)</td>
<td></td>
</tr>
<tr>
<td>R_{cryst}/R_{free}</td>
<td>22.0/25.0</td>
<td>22.0/24.5</td>
<td>22.6/26.1</td>
<td>22.8/25.3</td>
</tr>
<tr>
<td>(32.6/42.4)</td>
<td>(31.9/36.1)</td>
<td>(30.1/35.8)</td>
<td>(27.7/31.0)</td>
<td></td>
</tr>
<tr>
<td>Rmsd bonds (Å) / angle(°)</td>
<td>0.010/1.36</td>
<td>0.010/1.41</td>
<td>0.011/1.63</td>
<td>0.009/1.26</td>
</tr>
<tr>
<td>Average B factor (Å²)</td>
<td>67.90</td>
<td>66.50</td>
<td>106.40</td>
<td>123.50</td>
</tr>
<tr>
<td>No. of atoms</td>
<td>10907</td>
<td>10921</td>
<td>10601</td>
<td>10141</td>
</tr>
<tr>
<td>Protein atoms</td>
<td>12</td>
<td>35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Water molecules</td>
<td>25</td>
<td>25</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Ligands</td>
<td>25</td>
<td>25</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>No. of reflections</td>
<td>63256 (6246)</td>
<td>63457 (6234)</td>
<td>37222 (3584)</td>
<td>33318(3272)</td>
</tr>
<tr>
<td>Working set</td>
<td>3375(313)</td>
<td>3385 (343)</td>
<td>1963 (195)</td>
<td>1754(151)</td>
</tr>
<tr>
<td>Test set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramachandran plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favored (%)</td>
<td>95.5</td>
<td>95.8</td>
<td>92.2</td>
<td>90.1</td>
</tr>
<tr>
<td>Allowed (%)</td>
<td>4.5</td>
<td>4.2</td>
<td>7.4</td>
<td>8.2</td>
</tr>
<tr>
<td>Outliers (%)</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Numbers in parentheses represent the value for the highest resolution shell.

a. $R_{merge} = \sum |I_i - \langle I \rangle| / \sum |I_i|$, where I_i is the intensity of measured reflection and $\langle I \rangle$ is the mean intensity of all symmetry-related reflections.

b. $R_{cryst} = \sum |F_{calc} - F_{obs}| / \sum F_{obs}$, where F_{obs} and F_{calc} are observed and calculated structure factors. $R_{free} = \sum |F_{calc} - F_{obs}| / \sum F_{obs}$, where T is a test data set of about 5% of the total unique reflections randomly chosen and set aside prior to refinement.

c. B factors and Ramachandran plot statistics are calculated using MOLPROBITY(45).
Table II. Thermodynamic parameters of the bindings of LGN GoLoco motifs to \(\text{G} \alpha_{i3} \cdot \text{GDP} \) determined by ITC titration

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>(K_D)</th>
<th>(\Delta H)</th>
<th>(\Delta S)</th>
<th>(\Delta G)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>nM kcal mol(^{-1}) cal mol(^{-1}) K(^{-1}) kcal mol(^{-1})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 1</td>
<td>0.97</td>
<td>11.27</td>
<td>-16.69</td>
<td>-18.7</td>
<td>-11.12</td>
</tr>
<tr>
<td>Site 2</td>
<td>0.89</td>
<td>188.32</td>
<td>-22.80</td>
<td>-44.4</td>
<td>-9.57</td>
</tr>
<tr>
<td>GL123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 1</td>
<td>1.63</td>
<td>4.69</td>
<td>-12.55</td>
<td>-3.97</td>
<td>-11.37</td>
</tr>
<tr>
<td>Site 2</td>
<td>1.00</td>
<td>186.22</td>
<td>-15.46</td>
<td>-21.0</td>
<td>-9.20</td>
</tr>
<tr>
<td>GL23</td>
<td>1.80</td>
<td>87.72</td>
<td>-17.05</td>
<td>-24.0</td>
<td>-9.90</td>
</tr>
<tr>
<td>GL34</td>
<td>1.81</td>
<td>173.61</td>
<td>-20.97</td>
<td>-37.2</td>
<td>-9.88</td>
</tr>
<tr>
<td>GL234</td>
<td>3.08</td>
<td>358.42</td>
<td>-5.12</td>
<td>11.9</td>
<td>-8.67</td>
</tr>
</tbody>
</table>

The titration data of GL12 and GL123 were fitted with the ‘two sets of binding sites’ model, while the other data were fitted with the ‘one set of binding sites’ model. N denotes the number of binding sites in each model.
Figure 1
Figure 2
Figure 3
Figure 5
Figure 6
Figure 7